Manifold Learning for Image-Based Breathing Gating with Application to 4D Ultrasound
نویسندگان
چکیده
Breathing motion leads to a significant displacement and deformation of organs in the abdominal region. This makes the detection of the breathing phase for numerous applications necessary. We propose a new, purely image-based respiratory gating method for ultrasound. Further, we use this technique to provide a solution for breathing affected 4D ultrasound acquisitions with a wobbler probe. We achieve the gating with Laplacian eigenmaps, a manifold learning technique, to determine the low-dimensional manifold embedded in the high-dimensional image space. Since Laplacian eigenmaps assign each ultrasound frame a coordinate in low-dimensional space by respecting the neighborhood relationship, they are well suited for analyzing the breathing cycle. For the 4D application, we perform the manifold learning for each angle, and consecutively, align all the local curves and perform a curve fitting to achieve a globally consistent breathing signal. We performed the image-based gating on several 2D and 3D ultrasound datasets over time, and quantified its very good performance by comparing it to measurements from an external gating system.
منابع مشابه
Manifold learning for image-based breathing gating in ultrasound and MRI
Respiratory motion is a challenging factor for image acquisition and image-guided procedures in the abdominal and thoracic region. In order to address the issues arising from respiratory motion, it is often necessary to detect the respiratory signal. In this article, we propose a novel, purely image-based retrospective respiratory gating method for ultrasound and MRI. Further, we apply this tec...
متن کاملManifold Learning for Image-Based Gating of Intravascular Ultrasound(IVUS) Pullback Sequences
Intravascular Ultrasound(IVUS) is an imaging technology which provides cross-sectional images of internal coronary vessel structures. The IVUS frames are acquired by pulling the catheter back with a motor running at a constant speed. However, during the pullback, some artifacts occur due to the beating heart. These artifacts cause inaccurate measurements for total vessel and lumen volume and li...
متن کاملDeriving Anatomical Context from 4D Ultrasound
Real-time three-dimensional (also known as 4D) ultrasound imaging using matrix array probes has the potential to create large-volume information of entire organs such as the liver without external tracking hardware. This information can in turn be placed into the context of a CT or MRI scan of the same patient. However for such an approach many image processing challenges need to be overcome an...
متن کاملRetrospective 4D MR image construction from free-breathing slice Acquisitions: A novel graph-based approach
PURPOSE Dynamic or 4D imaging of the thorax has many applications. Both prospective and retrospective respiratory gating and tracking techniques have been developed for 4D imaging via CT and MRI. For pediatric imaging, due to radiation concerns, MRI becomes the de facto modality of choice. In thoracic insufficiency syndrome (TIS), patients often suffer from extreme malformations of the chest wa...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 13 Pt 2 شماره
صفحات -
تاریخ انتشار 2010